
Energy and Profit-Aware Proof-of-Stake Ofloading in
Blockchain-based VANETs

Vincenzo De Maio, Rafael Brundo Uriarte and Ivona Brandic
Vienna University of Technology, Austria

{name.surname}@ec.tuwien.ac.at

ABSTRACT

In Vehicular Ad-hoc NETworks (VANET) users do not necessar-
ily trust each other and in some cases they may introduce dubios
information in the network. Centralized approaches to improve
the credibility of information do not easily scale, require trusting
the service provider and have higher network delay. Blockchain
solutions are promising in the area but they need consensus on
the credibility of new information, which requires the participants
solve computational puzzles in a competitive manner. To cope with
vehicles’ limited computational resources and mobility, we propose
brokerage mechanism to decide whether to execute the valida-
tion locally, or to oload it to an edge or cloud infrastructure. We
deine a Satisiability Modulo Theories (SMT) method to enable
participants to decide whether to take part in the validation and
whether to oload it considering the state of the infrastructure,
energy eiciency, the oloading cost and the computation reward.
Our method obtains 77.7% higher proit and consumes 39.2% less
energy in comparison with the case where no oloading is allowed.

1 INTRODUCTION

VANET (Vehicular Ad-hoc NETworks) are used in a wide spectrum
of applications in traic management [38], ranging from collision
avoidance [4], traic lights management [26]. However, users of
these networks do not necessarily know each other and in some
cases theymaymisbehave and introduce dubious information in the
network, which can lead to, e.g., accidents or favour malicious users.
Therefore, new approaches to promote trust and improve informa-
tion are necessary. Solutions relying on centralized approaches [23]
do not easily scale, require the users to trust the service provider
and have a higher network delay, which can hinder timely decisions,
such as, a change of route. Hence, secure distributed solutions can
improve trust and the scalability of VANETS.

Blockchain has emerged as a promising solution for enabling
secure distributed systems, such as peer-to-peer electronic payment
systems [18], smart grids [20]. Several works propose blockchain-
based solutions for vehicular networks [30, 37]. However, trust in
distributed environments requires the validation and consensus
on new information about the environments (e.g., a report of an
accident). In blockchain normally the participants need to solve
computation puzzles in a competitive manner; broadcasting the so-
lution to other miners; reach consensus; and receive a reward for the
correct solutions as incentives (see the Section 2 for details). Despite
the fact that validation is feasible in wired blockchain networks, it
is still challenging for vehicles in the VANET because of the limited
computational resources and the mobility of the vehicles.

Conference’17, July 2017, Washington, DC, USA

2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Due to this limitation, the existing blockchain-based VANET
solutions either avoid the validation, reducing the trust in the net-
works, or develop a trust management systems that rely on roadside
units (RSUs), where vehicles only provide the necessary data for
this validation. In this work, we address the limitation by creating
a brokerage algorithm that handles the control of validation to the
network participants. More speciically, the main contribution of
this work is the deinition of a brokerage mechanisms that evaluates
where and when to execute the validation, i.e., if it is more conve-
nient to execute locally or to oload to edge or cloud computing1

nodes.
The use of edge nodes, especially, allows exploitation of resources

in nodes’ close proximity to increase trust in blockchain-based
VANETs, reduce latency and energy consumption. Integrating of-
loading in blockchain-based VANET allows validating a higher
number of transactions in a smaller time, with limited overhead for
the nodes in the network.

We propose ECbroker, a Satisiability Modulo Theories (SMT)-
based method to help VANET nodes in inding oloading trade-of
solution between energy eiciency and proit when oloading the
validation to cloud/edge infrastructures. ECbroker allows IoT de-
vices to decide whether to take part on the mining game and where
to oload the validation, based on the current state of the infras-
tructure, the economical cost for oloading and the computation
reward. Results show that ECbroker allows to obtain a 77.7% higher
proit and a 39.2% lower energy consumption in comparison with
the case where no oloading is allowed.

The paper is organized as follows. Section 2 describes back-
ground approaches. In Section 3 we deine our theoretical model.
Section 4 describes our method. In Section 5, we describe our sim-
ulation framework and our experimental setup, while Section 6
presents the evaluation. Related works are described in Section 7
and future work and conclusion are discussed in Section 8.

2 BACKGROUND

In VANET networks, vehicles receive information about the road
status both from sensors (e.g., cameras, noise, pollution sensors)
and other vehicles in the network. This information needs to be
validated and delivered to vehicles in a timely manner, allowing
them to take decisions based on, e.g., traic condition or weather.
However, due to the open nature of VANET networks, new solutions
are necessary to conirm the credibility of the participants and of
the messages exchanged in these environments.

Blockchain is a distributed, immutable and growing series of
records, divided into blocks and linked using cryptography. All

1Although clouds are centralised, oloading the validation process to clouds would
not increase the centralisation of blockchain since every validator is independent and
they choose their cloud provider, software base, virtual machine, etc.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

participants have a copy of the records and new records are broad-
casted to the other participants that validate it before adding it
to the ledger. The validation, also known as mining, requires the
consensus among the participants, which enables a system without
a central authority. We adopt this paradigm to create distributed
and trusted VANET networks.

Figure 1 illustrates the VANET architecture, briely described
below, which is based on the solution proposed in [37].

• The vehicles and road sensors exchange messages about the
environment, such as, traic congestion and incident reports;
• Each vehicle evaluates the credibility of all the received mes-
sages with a positive or negative rating (e.g., +1 if credible
and -1 if not);
• The trust value of every vehicle is calculated by summing
the ofset (positive/negative feedbacks) for all messages from
each involved vehicle and a candidate block is created;
• The participants concurrently try solve computation chal-
lenges to validate the messages in the network. The winner
of the validation process is rewarded by the network.

The last step of the algorithm, also known as blockchain valida-
tion, is modelled as a competitive game [16] where each network
user (miner) willing to participate in the validation attempts to
solve a computation challenges before the other miners in the net-
work. The main steps of blockchain validation are (1) receipt and
selection of messages to be validated, which are put together in
a candidate block; (2) validation of the block; (3) broadcast of the
validated block to all the nodes in the network for veriication; and
(4) the block is added to the blockchain, if it is the irst veriied
solution.

The validation merges concepts from Proof-of-Work (PoW) and
Proof-of-Stake (PoS) (for details we refer to [37]). With this al-
gorithm vehicles need to solve computational challenges which
diiculty is deined according to the sum of absolute values of mes-
sages’ ofsets in the candidate block as the stake. In this case, larger
trust values are more quickly relected in the blockchain, which
ensures the timely update of the recorded data. In other words, the
more the participants trust the messages, easier is for miners to
solve the computation problem and validate the messages.

While requesting the participants to solve computational chal-
lenges by themselves works well with wired blockchain networks,
applying it to mobile networks raises several issues, due to the
high computational cost of the validation. Another issue is the
connectivity of the nodes, which can be variable in this context.
Such variability in the connection could signiicantly afect the
broadcast phase, resulting in energy wastage. Some works propose
to do the validation in the roadside units (RSUs). However, this ap-
proach creates a dependence on RSUs, requires a second blockchain
(one between vehicles and one between RSUs), increases centraliza-
tion and reduces the level of trust and control of the participating
vehicles, since a single institution may own multiple RSUs.

Our goal is to allow the vehicles participating in the VANET to
take control of the validation and increase trust. In this work, we
focus on identifying a method for deciding where to perform vali-
dation, while optimising selected objectives. More speciically, we
propose brokerage algorithm that handles the control of validation
to the network participants, who decides whether to execute the

Figure 1: Blockchain-based VANET

validation or to oload it to cloud or edge in order to ensure a faster
delivery of the information.

2.1 VANET Information Validation

We describe the main steps of the validation step in Figure 2. In Step
1, each node concurrently looks for new blockchain transactions
and check if new blocks are available. Each new transaction is
added to the transaction pool. Once a new block is available, the
transactions included in that block are removed by the transaction
pools. On regular intervals, nodes generate a candidate block to be
validated (Step 3). In this work, we assume for simplicity that all
transactions have the same length, therefore the problem that we
want to solve is to identify the number of transactions to be mined.
The number of transactions, as well as the edge node selected in
this phase should guarantee in the long-term the node will proit
from the validation. Once the node selection is performed, the PoS
is computed (Step 5) and the result is sent in broadcast to other
nodes in the network (Step 6). The PoS is then veriied by the other
nodes in the network (Step 7) and, if the node is the irst one to
mine the candidate block, the node obtains its reward (Step 8).

2.2 Business Model

The advent of self-driving cars, boats and drones has renewed in-
terest in VANETs. These networks enable communication between
its participants, who can exchange valuable current and historical
information about, e.g., traic, weather condition and routes. There
are several business models for the implementation and use of such
networks, here we focus on blockchain-based distributed VANETs.

In these networks, it is necessary create incentives to the partici-
pants to provide credible information and to validate the informa-
tion received, which can be computation intensive. A valid business
model in this case is the similar to other blockchain scenarios: the
creation and association of a crypto-currency. In particular, the
system could mint new coins to reward the transaction validation.

Nevertheless, the value of these coins is a function of demand
and ofer. To sustain the demand and the value currency, which

Figure 2: First-hop block validation overview

attracts and stimulate participants to generate and validate data,
the system could require the use of coins for multiple purposes. For
instance, they might be required for the payment of ixed member-
ship fee or ixed fees for on-demand information; for integrating
the network with other service providers, such as, GPS providers
or traic information broadcasters; to pay for requesting speciic
information to participants; and for purchasing general statistics
related to traic.

3 THEORETICAL MODEL

3.1 VANET model

We model the VANET as a directed graphV = (N ,L), where N
is the set of computational nodes in the VANET and L is the set
of network connections between nodes. Also, we deine a mapM,
containing a set of geographical coordinates, in terms of latitude
and longitude, and models the area whereV is deployed. The state
of a computational node n at a instant τ is deined as in Equation 1

n = (THREADS, MIPS,pos,τ), (1)

where THREADS(n,τ) represents the amount of threads available on
node n at time τ , MIPS(n) represents the computational capabilities,
expressed in MIPS (millions of instructions per second) of each
core in vehicle n, while pos(n,τ) represents the position of node
n over map M at time instant τ . We distinguish three types of
computational nodes: On-board units (OBU), edge nodes and cloud
nodes. On-board units are the communication and computation
enabled devices mounted on each vehicle, that allow to perform
simple computations; edge and cloud nodes, are, respectively, edge
and cloud data centers. Edge nodes model computational facilities
deployed close in the urban area, as in [5], while cloud nodes model
cloud data centers. For simplicity, we divide OBUs, edge and cloud
nodes in three diferent sets, namely O, E and C. The main difer-
ences are that (1) O nodes are mobile, while E and C and (2) E
nodes hardware capabilities are signiicantly less than nodes in C,
as stated by [5]. Therefore, we deine the set N = O ∪ E ∪ C, with
O ∩ {E ∪ C} = ∅, E ∩ {C ∪ O} = ∅ and C ∩ {O ∪ E} = ∅.

Concerning the set of network connections L, it contains the
network connections between nodes in N , namely, L ⊆ N × N .
For each li, j = (ai ,aj) ∈ L we deine latency(li, j) and bbw(li, j),
respectively the latency and the bandwidth available on the network
connection between ni and nj .

3.2 PoS model

3.2.1 PoS validation time. The validation time for a PoS, as de-
ined in Section 2, is the time that a node in the blockchain requires
to decrypt each transaction in the block. The decryption time varies
for each PoS p, therefore cannot be determined in advance. How-
ever, it depends mostly on two parameters: the diiculty value,
speciied in the coniguration of the blockchain network, and the
threads that each node in the blockchain assigns to the decryption
task. Based on this, we deine the PoS MI as in Equation 2,

mipos (p,n,τ) = X (params(THREADS(n,τ), dif)) (2)

where p is the PoS, n is the node where the PoS is validated, τ is
the time instant where PoS is validated, X represents a random
variable, following a speciic distribution, and params are the pa-
rameters of distribution of X . Concerning params, we assume that
the parameters are a function of the number of threads available on
node n, THREADS(n) and on the value dif , modelling the diiculty
value of the blockchain. The validation time of a PoS p, excluding
oloading, is then equal to

tpos (p,n,τ) =
mipos (p,n,τ)

MIPS(n) · THREADS(n,τ)
, (3)

as we assume that each thread gets the full CPU over the node n
which executes the validation of p. The distribution used in this
work is described in Section 5.5.

3.2.2 Ofloading model. Wehave two possibilities for oloading:
cloud or edge nodes. We assume edge infrastructure to be organized
as a Small Cell cloud infrastructure with a double coordinate system,
as in [11]. For each cell, we have x and y coordinates. The distance
between each cell is deined as in Equation 4.

d(n1,n2)) = |x1 − x2 |+

max(0,
|x1 − x2 | − |y1 − y2 |

2
). (4)

If at least one between n1 or n2 is a cloud node, we assume d(n1,n2)
to be equal to a random value that models internet latency, Kc . In
Figure 2, oloading a PoS requires to (1) oloading the PoS data, (2)
computing the PoS, (3) broadcasting to all vehicles in the blockchain
network. Therefore, we deine the oloading time from OBU o to
target node n as

tval (p,o,n) = d(o,n) · latency(o,n) +
data(p)

bw(o,n)
+ tpos (p,n,τ)+

broadcast(result(p),o). (5)

wheredata(p) is the amount of data of transactionp and result(p) is
the hash of the transaction p. The time for broadcasting the result of
validation to other participants in the blockchain is instead deined

as broadcast(result(p),o) in Equation 6.

broadcast(result(p),o) =
∑

oi ∈O\{o }

d(o,oi)·latency(o,oi)+
result(p)

bw(o,oi)

(6)

3.3 PoS cost model

Oloading on a cloud/edge infrastructure has a economical cost for
the users. This cost is for the use of the computational resources
on the cloud/edge layer, that are rented to the users in form of
containers. We deine a set of container instances available on
a cloud/edge infrastructure, namely I. The price for execution
on a node n p(i,n) depends on two main parameters: the type of
container instance i selected and node n where the instance is
running. We deine it in Equation 7,

p(i,n) =

0 if n ∈ O
ci if n ∈ C
ci + ce (i,n) if loc(i) is an edge node

(7)

where ce (i,n) is an additional quantity for execution on edge nodes,
deined according to [11]. Based on this function, we deine the
cost of validating a single transaction p, c(p, i) as in Equation 8

c(p,n) = pi (i) · tval (p,v,n). (8)

We also deine as P(o) the set of all transactions validated and/or
oloaded by OBU o. Finally, we deine the cost paid by a OBU o as

C(o) =
∑

p∈T(o)

c(p,n). (9)

3.3.1 Reward. OBUs get a reward as an incentive to perform
validation, proportional to the number of transactions that they
validate. We assume that reward is ixed to a quantity r . For this
reason, reward for a OBU o is deined as in Equation 10

R(o) = r · T (o). (10)

We deine the proit for a OBU o, Pr (o), as

Pr (o) = R(o) − C(o) (11)

3.4 Energy model

Validation process consumes energy on the on-board unit of the
vehicle. Energy consumption is the integral of power consumed
by the on-board unit Pobu over time. We deine the instantaneous
power for validating a transaction p on the OBU o as the sum of
the power of processing and the in Equation 12

Pobu (p,o,τ) = Pcpu (o,τ) + Pnet (p,o,τ) + Pidle (o). (12)

For the CPU power, we employ the model of [3], described by

Pcpu (p,o,τ) =

i<THREADS(o)∑

i=0

βfreq(i,τ) · Ucpu (v,τ) + βbase, (13)

where βfreq(i,τ) is a constant dependent on the frequency of CPU
used by thread i at the instant τ , βbase is a hardware dependent
constant andUcpu (o,τ) is the CPU utilization of the OBU o at time
instant τ , as deined by Equation 14.

Ucpu (o,τ) =
THREADS(o,τ)

THREADS(o)
, (14)

where THREADS(o,τ) is the number of threads available at time
instant τ . Concerning the power for oloading the PoS p, we deine
the power consumption of network transfer by expanding themodel
proposed by [1], from which we derive our instantaneous power
function, deined in Equation 15

Ptx (n1,n2, t) = Pamp (n1,n2) · bw(n1,n2) · d
v (15)

where Pamp is the power for ampliication between the two nodes,
bw(n1,n2) is the bandwidth available between the two nodes, d the
distance between the two nodes, v the path loss component, t the
instant when transmission is happening. When no transmission
is happening, Pamp (n1,n2) = 0. Energy consumption is deined
instead as in Equation 16

Etx (p,n1,n2) =

∫ tend (n1,n2)

tstar t

Ptx (n1,n2, t) dt (16)

where tstar t is the instant where transmission starts and tend =
data(p)
bw (n1,n2)

is the time when transmission ends. All energy coei-

cients are in Table 2.

3.5 SMT encoding of the problem

Every time a set of transactions T(τ) is available, each OBU has
to decide if it is worth to take part to the validation, and if so,
create a suitable transaction block and take a oloading decision
which satisies its energy consumption and proit constraints. We
model this constraint satisiability problem in terms of Satisiability
Modulo Theories (SMT). These formulas contain various operations,
ranging from booleans, arithmetic, arrays and recursive datatypes,
combining the power of constraint programming with irst-order
logic to obtain an assignment that satisies infrastructure and users’
constraints [19]. The reasons for using SMT lie in its capabilities to
express infrastructure and QoS constraints and its applicability to
near real-time scheduling problems [7]. Also, SMT can be solved
by standard SMT solvers [12], extensions of typical SAT solvers
that check satisiability of formulas made of Boolean variables and
operations. Solver is described in Section 5.6.

3.5.1 Basic definitions. First of all, we deine the matrix R(T ,I)
with dimentions |T | × |O|, where each row is a transaction pi ∈ T
and each column is a OBU {o} ∈ O. Each cell Ri, j contains the time
required to perform validation of transaction pi on node j, namely

Ri, j = tval (pi ,oj ,oj). (17)

similarly, we deine the matrix P(T ,I), with Pi, j equal the proit of
validating transaction pi on OBU oj and E(T ,I), with Ei, j equal to
the energy consumption for validating transactionpi on OBU oj . As-
signment of transactions to OBUs is modelled by matrix assignment
A = |T | × |O|. Each cell Ai, j is deined as

Ai, j =

{
1 if pi is assigned to OBU oj
0 otherwise.

(18)

In our deinition, we want each transaction to be assigned at most
to one OBU. Therefore, we impose the constraint

∀i ∈ [0, |T |]
∑

j ∈[0, |O |]

Ai, j ≤ 1. (19)

Also, we want that each OBU does not get more transactions than
its block size. Therefore, we also impose the constraint

∀j ∈ [0, |O|]
∑

i ∈[0, |T |]

Ai, j ≤ B. (20)

In our formulation, we also have to consider oloading of block
validation from OBUs to computational (edge or cloud) nodes. For
this reason, irst, we deine the oloading runtime, proit and energy
matrices Ro , Po and Eo . These matrices have dimensions |O| × |C ∪
E|, and at each cell Ro , Po ,Eoi, j contain, respectively, the runtime,
the proit and the energy consumption for oloading the transaction
block from OBU i to computational node j. Then, we deine the
oloading matrix O f f as matrix A, namely

O f fi, j =

{
1 if oi oloads to node nj ∈ E ∪ C
0 otherwise.

(21)

Similarly to Equation 19, we impose that a block cannot be oloaded
to multiple nodes, then

∀i ∈ [0, |O|]
∑

j ∈[0, |E∪C |]

O f fi, j ≤ 1. (22)

For simplicity, we also deine a vector ω with length |O|, deining
whether a OBU i oloads a PoS to any computational node.

ωi =

{
1 ⇐⇒ ∃j |O f fi, j = 1
0 otherwise

(23)

Problem deinition. Our SMT can be seen as inding an assign-
ment for O f f and A such that, for each OBU in O, the values for
runtime, proit and energy respect the constraints deined by each
OBU. Constraints deined by each OBU are modelled by a vector
Goal(oi) = ⟨pri , eci ⟩, namely, cost and energy consumption de-
sired by OBU oi . Also, we have to consider that each block has to
be mined respecting a given deadline d . Each OBU can choose to
oload its block to a computational node. Based on the previous
deinitions, we deine the constraints of our SMT formulation in
the following equations:

(1 − ωj)
∑

i ∈[0, |T |]

∑

j ∈[0, |E∪C |]

Ai, jRi, j + ωjO f fi, jR
o
i, j ≤ d (24)

(1 − ωj)
∑

i ∈[0, |T |]

∑

j ∈[0, |E∪C |]

Ai, jPi, j + ωjO f fi, jP
o
i, j ≤ Goalj (pri)

(25)

(1 − ωj)
∑

i ∈[0, |T |]

∑

j ∈[0, |E∪C |]

Ai, jEi, j + ωjO f fi, jE
o
i, j ≤ Goalj (eci)

(26)
Respectively modelling runtime, proit and energy constraints for
each vehicle j. Each To obtain the constraints of our SAT formu-
lation, we combine Equations 24, 25 and 26 using a AND logical
connector and adding also Equations 20, 22 and 19.We omit capacity
constraints of computational nodes for brevity.

4 ECBROKER

The goals of ECbrokerare to determine (1) whether or not to par-
ticipate to the validation, and (2) how to perform the validation.
For each OBU, the algorithm goes through the following phases:
(1) Reading transaction pool, where each OBU access the transac-
tion pool to check non-validated transactions; (2)Estimation phase,
where each OBU determines if it can participate to the validation

Figure 3: ECbroker lowchart

satisfying the deadline imposed by the blockchain; (3)SMT Solver,
where, based on results of estimation phase, OBU executes the
solver to identify an assignment satisfying the OBU’s constraints;
(4)Creation of candidate block, where, according to solver’s results,
the OBU creates a candidate block of transactions; (5)Validation
phase, where the OBU performs the validation of the candidate
block. ECbroker is detailed in Algorithm 1.

Algorithm 1 ECbroker Algorithm

1: function ECbroker(o, T, Goal (o), P, d)
2: nT ← |T |
3: nThreads ← дetAvailableThreads(o)
4: q ← est imateRuntime(P)
5: bSize ← calculateBlockSize(q, d)
6: if bSize ≥ 1ANDq · bSize ≤ d then
7: cNodes ← дetCandidates(o, dist, threshold)
8: mappinд ← SOLV E − SMT (T, bSize, q, Goal (o), cNodes)
9: (r t r , pr r , ecr) ← validate(mappinд)
10: elsereturn
11: end if
12: end function

The input includes the current OBU o, the transaction pool T ,
the goal vector for OBU o,Goal(o), the deadline d and a probability
value P that is used for the estimation phase. P is used because it is
not possible to know in advance the time the validation will take.
However, in our model we assume that this time is modelled by a
probability distribution, whose parameters depend on the diiculty
and the number of threads utilized for validation. Therefore, irst,
we obtain the number of threads available on OBU o (line 3). The
estimation phase, described by Algorithm, starts at line 2.

Algorithm 2 Estimation phase of ECbroker

1: function estimateRuntime(o, T, P, d)
2: nThreads ← дetAvailableThreads(o)
3: X ← selectDistr ibution(nThreads, dif)
4: param← parametersFor (X , nThreads, dif)
5: return quantile(X , P)
6: end function

Due to the nature of PoS computation, it is impossible to know
in advance the time they will take for their execution. However,
since we model them accordingly to a probability distribution, we
can identify an upper bound for the execution. By deinition, a
p-quantile q of a probability distribution is a value such that all
the values coming from a random variable X , following a given
probability distribution with speciic parameters, are lower than
q with probability P , namely, P(X ≤ q) = P .We assume that each
node contains a repository of probability distributions that can
be selected according to the number of available threads and the
dif value. Once we have the upper bound q, we can determine a
suitable block size at line 5. By our assumptions, all transactions
have the same data size, and diiculty value is ixed. Therefore, we
assume that upper bound that we have for the validation time is
equal to bSize · α . Since we want upper bound to be lower than
deadline d , we set bSize · α ≤ d . Also, to this time, we have to add
the time it takes to compute the mapping for the validation, coming
from the SMT. We call this quantity tmap . Therefore, the block size
is calculated according to Equation 27

bSize =

⌊
d − tmap

α

⌋
. (27)

Afterwards, we check on line 6 if it is possible to include at least
one transaction in the newly generated block. If that is the case,
the algorithm proceeds by solving the SMT and performing the
validation. The SMT can be solved by using a standard SMT solver.
To accelerate computation of SMT solver, we restrict the evalua-
tions only to a restricted set of nodes, determined by the function
selectCandidateNodes , described by Algorithm 3.

Algorithm 3 Selection of candidate nodes

1: function selectCandidateNodes(o, dist, threshold)
2: cNodes ← ∅
3: pNodes ← E ∪ C
4: for all n ∈ pNodes do
5: if d (o, n) ≤ distAND |cNodes | ≤ threshold then
6: cNodes ← cNodes ∪ {n }
7: end if
8: end for
9: end function

In this case, selection is performed based on the distance between
the nodes and the OBU and on a threshold on the number of nodes
that we consider. Once the mapping is calculated, we validate it by
applying the mapping obtained by the SMT solver and checking
the values obtained by it, at line 9.

5 EXPERIMENTAL SETUP

5.1 Simulator

Preliminary evaluation is performed using simulations. After in-
vestigating diferent edge simulators, like iFogSim [15] and edge-
cloudSim [36], we decided to base our simulation on SLEIPNIR2,
the extended version of FogTorchPi described in [11]. SLEIPNIR
is a edge simulator running on Apache Spark, which allows it to
easily scale according to underlying computational resources. More-
over, it provides validated models for Edge/Cloud infrastructure.

2https://github.com/vindem/sleipnir

n CPU MIPS ci
∈ N

cloud-* 16 10000 0.03

edge-* 8 2500 0.03 + ce (i)

obu-* 4 1000 0

Table 1: Hardware conigu-

ration.

Coeicient Value
βfreq 6.9320

βbase 625.25e − 6

P
3д
amp 0.025e − 6

P
wif i
amp 0.007e − 6

Table 2: Energy coeicients

Connection Availability
QoS proile

ProbabilityLatency Bandwidth
(ms) (Mbps)

3G 0.9
54 7.2 0.9957

∞ 0 0.043

WiFi 0.1

15 32 0.9

15 4 0.09

∞ 0 0.01

Table 3: Network availability distribution.

We extend this version by adding support for (1) OBUs, (2) VANET
networking and (3) PoS modelling and (4) mobility modelling.

5.2 Infrastructure model

We assume that CPU speciications of cloud and edge nodes, do not
change during each diferent run of the simulation. We assume that
edge nodes have fewer capabilities than cloud nodes in terms of
cores and MIPS [5]. Hardware setup for each node type is summa-
rized by Table 1. We assume 6 cloud locations and a Edge node for
each cell. Concerning the connections inside cloud and edge layer,
we set up each link bandwidth and latency according to the specii-
cations in Table 3. For connections intra-layer, we distinguish two
main layers: (1) connections between OBUs and edge/cloud layer
and (2) the connections between edge and cloud layer. For the irst,
due to the unreliability of connections in mobile data distribution
services (caused by mobility, environmental factors and reduced
availability of edge nodes), we need to accurately model the unreli-
able connections between OBU and edge/cloud nodes to perform
an accurate simulation. The QoS provided by each link li ∈ LI as a
random variable r ′(li) = ⟨latency(li), bw(li)⟩. By our assumption,
OBU can use two types of connections: 3G and WiFi. Availability of
connection is determined by a random variable. If both are available
during the execution, the faster is selected. For available latency
and bandwidth we use the probability distribution of [11] which
is summarized in Table 3. latency = ∞ and bw = 0 means that
the two computational nodes are not connected. If a cloud node
is selected for placement, the Internet transmission delay Kc be-
tween 100 and 300 milliseconds [11] is considered. We model Kc as
a Gaussian random variable with µ = 200 and σ = 33.5 [11]. Con-
cerning the connections between OBUs and edge nodes, bandwidth
and latency are set according to Table 1, multiplying the latency by
the distance between two nodes (see Equation 4). Distance depends
on the coordinates of each node, as deined in Section 5.3.

https://github.com/vindem/sleipnir

5.3 Node distribution

We simulate the execution of ECbroker on real-world urban ar-
eas selected among the neighborhoods in the city of Vienna. We
imagine that edge node are deployed over a urban areaM in a
way similar to cellular network, according to a small-cell setup
with cells of 2km2, with a single edge node per cell, as in [11]. The
number of vehicles is calculated as 2 · AREA2 , where AREA is the

size of the area we are considering in km2 and 2 is the area of each
cell in km2, which is typical in works targeting SCC [2]. We extract
the areas’ maps from OpenStreetMaps3, and use them also for mo-
bility simulations. Number of cloud nodes is set as 6 to simulate
the geographical distribution of [33].

5.4 Mobility Simulation

To simulate OBU’s mobility, we employ mobility traces generated
using SUMO simulator [32]. SUMO is a state-of-the-art mobility
simulator that allows to simulate vehicular and pedestrian traic on
OpenStreetMap maps. To perform our simulation, we extract maps
of the areas described in Table 4. Then, we use the maps extracted
fromOpenStreetMaps as input for the SUMOmobility simulator [6],
which is used in many works on VANET, such as [34]. First, we
collect logs about relative coordinates of each vehicle moving in the
aforementioned areas, with sampling interval of 1 second. For each
vehicle, we generate diferent logs. Once the simulation is complete,
we use the generated logs to simulate mobility of subscribers, up-
dating the coordinates of each subscriber according to the mobility
traces as long as our simulation advances.

5.5 PoS modelling

As described in Section 5.5, the MI for the transaction validation
are generated using a random variable. Since the diiculty is set
at the moment of initialization of the blockchain, we perform our
modelling by ixing the diiculty value and varying the amount
of threads that perform the mining, to simulate the variation of
computational capabilities. We collect data about 5 hours of mining
for diferent number of threads in the [1, 16] interval (the number of
cores available on the selected machine), which gives us more than
10000 total readings of validation runtimes. Mining is performed
over a Intel Xeon E5-2623. By analyzing the validation times, we
observe that (1) time is higher with lower of threads, and (2) the
shape of the runtime distribution is very similar between diferent
thread numbers. (see Figure 4). The dif value is set to 0xffffff

in all the nodes of our blockchain, which is a typical test value
used in experimental blockchain setup. To identify the best it for
this distribution, irst, we draw a Cullen-Frey graph to identify the
squared-skewness and the kurtosis of the data, using R package
fitdistrplus. Then, once observed the similarity of these values
with the ones of β distribution, we run a goodness-of-itness χ2-
test with 0.01 conidence, using R EnvStats package. χ2 and the
p −value results are summarized Table 5.

The test is passed when a p − value higher than the speciied
signiicance value is obtained. We use these preliminary results to
simulate the validation time, according to the number of threads
available on the nodes.

3https://www.openstreetmap.org

Area Extension (km2) # OBU # edge nodes # cloud DC

Hernals 11.35 24 36 6

Leopoldstadt 19.27 40 100 6

Simmering 23.23 48 144 6

Table 4: Data about deployment area.

Threads αthr βthr χ2 p −value

1-3 0.6554 4.2105 13.7933 0.1826
4-6 0.6694 3.3925 28.0288 0.0210
7-9 0.6991 3.4636 38.1903 0.0240
10-12 1.1231 9.2888 31.1597 0.2223
13-14 1.1011 211.24 28.9226 0.2671
15-16 0.7889 1.9633 24.7511 0.4100

Table 5: Statistical analysis.

5.6 SMT Solver

For compatibility with SLEIPNIR, we evaluated diferent solvers
ofering a Java API, such as SMTInterpol [8], STP [14] and Z3 [12].
Among them, we selected Z3, due to its wide applications to real-
time scheduling problems [7]. Also, Z3 solver allows us to set a
timeout on the solution, which makes it suitable for near real-time
scenarios. When the timeout of the solver expires, it returns the
best solution that he could ind until then. To simulate a Ethereum
blockchain, we set its timeout to 1.5 minute. The used Java API is
available online4.

6 EVALUATION

In this section we evaluate ECbroker in terms of proit and energy
consumption. To calculate the proit, we assume r = 1 for each
transaction for which a OBU completes the validation. We simulate
1 day of execution and generate n new transactions in rounds of 2
minutes, where n is a uniform random variable with range [1, |O|],
which models the fact that at most one transaction per OBU is
generated at each round.

6.1 Quantile evaluation

We compare ECbroker performance using diferent P values, as
this afects the upper bound used to take our oloading decisions.
We variate P between [0.05, 0.95] and see how proit and energy
consumption are afected. We simulate a edge/cloud infrastruc-
ture deployed over areas in Table 4. Results are shown in Figure 5.
"H" lines refer to HERNALS area, "L" to LEOPOLDSTADT and "S" to
SIMMERING. Each value is the average value over each simulation
round. We see that lower P implies higher energy consumption.
This is because a lower P causes runtime underestimation, which
causes the vehicles to perform more local processing. This also
causes a higher proit due to the reduced oloading, as we see from
Figure 5(c) which show the average percentage of oloaded transac-
tions per round by each OBU. By increasing P , we observe instead
an opposite tendency, due to the overestimation of the PoS runtime
which triggers more oloading to edge nodes. The choice of this
parameter allows user to adjust algorithm behavior, depending on
what he/she prefers between proit and energy consumption.

4https://github.com/Z3Prover

https://www.openstreetmap.org
https://github.com/Z3Prover

nThreads=1

Runtime for PoS validation [sec]

D
e
n
s
i
t
y

0 100 300 500

0
.
0
0
0

0
.
0
0
3

0
.
0
0
6

(a) Runtime distribution, 1 − 3 threads

nThreads=5

Runtime for PoS validation [sec]

D
e
n
s
i
t
y

0 20 40 60 80 100

0
.
0
0

0
.
0
2

(b) Runtime distribution, 4 − 6 threads

nThreads=7

Runtime for PoS validation [sec]

D
e
n
s
i
t
y

0 20 40 60 80

0
.
0
0

0
.
0
2

0
.
0
4

(c) Runtime distribution, 7 − 9 threads

nThreads=10

Runtime for PoS validation [sec]

D
e
n
s
i
t
y

0 20 40 60 80

0
.
0
0

0
.
0
2

0
.
0
4

(d) Runtime distribution, 10 − 12 threads

nThreads=13

Runtime for PoS validation [sec]

D
e
n
s
i
t
y

0 20 40 60 80 100

0
.
0
0

0
.
0
2

0
.
0
4

(e) Runtime distribution, 13 − 14 threads

nThreads=16

Runtime for PoS validation [sec]

D
e
n
s
i
t
y

0 20 40 60 80 100

0
.
0
0

0
.
0
2

0
.
0
4

(f) Runtime distribution, 15 − 16 threads

Figure 4: Mining runtime distributions on Intel Xeon E5-2623, 5 hrs execution.

 0

 0.5

 1

 1.5

 2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro
fit

Quantile

Variation of quantile

PROFIT-H
PROFIT-L
PROFIT-S

(a) Average proit per OBU

 0

 200

 400

 600

 800

 1000

 1200

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
n
e
rg

y

Quantile

Variation of quantile

ENERGY-H
ENERGY-L
ENERGY-S

(b) Average energy consumption per OBU

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1O
ffl

o
a
d
e
d
 t

ra
n
s
a
c
ti

o
n
s
 [

%
]

Quantile

Variation of quantile

OFFLOAD-H
OFFLOAD-L
OFFLOAD-S

(c) Percentage of oloaded transactions

Figure 5: Quantile variation

6.2 Infrastructure comparison

We compare performance of ECbroker in four diferent scenar-
ios: OBUONLY, where no oloading is used, EDGEONLY, where only
edge nodes are used for oloading, HYBRID, where oloading is per-
formed on a hybrid cloud/edge infrastructure, and NEAREST, which
uses the same setup of EDGEONLY but allows oloading only on
the node that is closer to the OBU. The P value for the quantile is
set to 0.5, as it provides the best compromise between energy and
proit. For brevity, we show only results for HERNALS area, since
the other areas show similar trends. We also showthe average num-
ber of transactions per round that OBUs are capable to validate.

We see from Figure 6 that the use of hybrid cloud/edge infrastruc-
tures allows a 77.7% improvement for proit and a reduction of
energy consumption by 39.2% in comparison with OBUONLY. The
higher proit is due to the increased number of transactions that can
be evaluated, as shown in Figure 6(c). Also, the energy consump-
tion for oloading transactions is signiicantly less than energy for
processing, with a positive efect for the average energy consump-
tion. Concerning the NEAREST approach, while energy consumption
is comparable to the EDGEONLY case, proit is 18.7% less than the
HYBRID case and 13.3% less than EDGEONLY case. Results shows the
beneits of having multiple oloading possibilities, which however
requires a brokerage mechanism to select the best trade-of solution.

 0

 0.5

 1

 1.5

 2

O
B
U
O
N
LY

ED
G
EO

N
LY

H
YB

R
ID

N
EA

R
EST

P
ro
fit

PROFIT

(a) Average proit per OBU

 0

 200

 400

 600

 800

 1000

 1200

 1400

O
B
U
O
N
LY

ED
G
EO

N
LY

H
YB

R
ID

N
EA

R
EST

E
n
e
rg

y
 c

o
n
s
u
m

p
ti

o
n
 [

J]

ENERGY

(b) Average energy consumption per OBU

 0

 5

 10

 15

 20

O
B
U
O
N
LY

ED
G
EO

N
LY

H
YB

R
ID

N
EA

R
EST

#
 T

ra
n
s
a
c
ti

o
n
s

TRANSACTIONS

(c) Average number of transactions validated per round

Figure 6: Infrastructure comparison

 0

 5

 10

 15

 20

 25

 30

 35

 40

 60 80 100 120 140 160 180 200

R
u
n
ti

m
e
 [

s
e
c
]

of nodes (OBU+edge+cloud)

RUNTIME

Figure 7: Scalability evaluation

6.3 Scalability evaluation

Finally, we analyse the runtime of ECbroker to show its applicabil-
ity to blockchain-based VANETs. We measure the average runtime
over 1000 simulations of a execution round of ECbrokerover all
areas described in Table 4. We run the simulation using JVM 1.8 in a
Intel(R) Core(TM) i7-7500U laptop. The simulated runtime is shown
in Figure 7. 95% conidence intervals for HERNALS, LEOPOLDSTADT
and SIMMERING runtimes are, respectively, [4.8, 14.7], [23.4, 59.9]
and [33, 63.2]. We see that over each area ECbroker delivers a timely
validation solution that satisies users’ constraints. In average, the
block validation time obtained by placement calculated by ECbro-
ker is 55.6 seconds, which is adequate to the deadline of 2 minutes
set by typical blockchain protocols, such as Ethereum. It is also of
note that, due to the diiculties in deploying a node in each cell, we
expect a number of nodes closer to 60, even in bigger urban areas,
which results in a runtime around 5 seconds. Moreover, this time
could also be signiicantly reduced by performing an embedded
non-Java implementation, e.g., using C++ library for Z3, and by
performing further code optimization for diferent target devices.
Nevertheless, these preliminary results are promising and show
that using SMT solver for oloading decisions of PoS validation is
a promising research direction.

7 RELATED WORKS

Blockchain has emerged as a promising solution for enabling se-
cure distributed systems, such as peer-to-peer electronic payment
systems, smart grids, and vehicular networks. Blockchain-based
VANET are discussed in [27]. In VANET context, several works
focus on reward model [29, 35], without considering oloading.

In [24] the authors study the impact of mobility the validation
process in VANETs. A particular interesting aspect of this study is
the probability winning the mining process, which could be adopted
in our solution as a future work. Yet, the authors do not consider
the possibility of oloading this process.

In [22] an authentication mechanism for vehicular fog infras-
tructure is proposed. The work focus the cross data centre authen-
tication but does not mention the message validation. In [37] the
authors develop a blockchain-based VANET architecture. How-
ever, their approach depends on third-party RSUs and requires
two blockchain networks. Similarly, Kang et. al [21] propose a
blockchain-based solution for vehicular networks focusing on the
deinition of reputation of vehicles since it is a good indicator of
data quality. Moreover, they consider RSUs as edge nodes, which
participate on the validation of the messages. However, like similar
approaches, the RSUs and a centralised cloud are used to validate
messages, which takes control from the vehicles and reduces trust
in the network. In our approach, we also use edge and cloud infras-
tructures but the participants of the network can choose where to
execute the validation (including locally) and the edge and cloud
infrastructure are not owned by a single entity.

The beneits of mobile oloading for enhancing capabilities of
mobile devices has been shown by [25]. Frameworks like [9, 10]
have been proposed for mobile workloads, but without considering
latency critical applications or blockchain context. Oloading capa-
bilities of VANET have been analytically investigated by [13]. Other
works target computation oloading on cloud infratructure [28] or
on hybrid cloud/edge infrastructures [17], but without without con-
sidering requirements of PoS oloading. Similar to our work, [31]
focuses on blockchain oloading for VANET, but they rather focus
on PoW computations, rather than on PoS, therefore having less
latency requirements in comparison to our scenario. Plus, their
focus is more on security and content caching, rather than on com-
putation oloading.

8 CONCLUSION AND FUTUREWORK

In this paper, we presented a preliminary study about a method for
PoS oloading over VANETs based on SMT. First, we identify the
theoretical background about VANETs, blockchain and SMT solvers.
Then, we deine a theoretical model for PoS oloading problem,
and we deine it in terms of SMT, then we design ECbroker, a
algorithm which allows each node in the VANET to decide where
to oload their transaction block in order to improve both energy

eiciency and proit. Results show improvement of 77.7% for proit
and a reduction of energy consumption of 39.2%, between the cases
with and without oloading. Also, we perform an evaluation of
diferent upper bounds for ECbroker, modelled by parameter P , and
identify the best value for energy consumption and proit. Finally,
we evaluate the runtime of our simulation, showing the possible
applicability of SMT to the VANET scenario.

In future work, we plan to provide a real-world implementation
of ECbroker, showing its applicability in a real world scenario.
Also, we will investigate methods to accelerate the computation
of a solution for SMT, in order to apply such technique to a wider
spectrum of mobile applications, with stricter latency requirements.
We also plan to consider other aspects in our Broker, such as, the
business model and other Quality of Service terms.

ACKNOWLEDGMENTS

This research was funded by the Rucon project (Runtime Control
in Multi Clouds), FWF Y 904 START-Programm 2015 and by the Eu-
ropean Union’s Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie Grant Agreement No.838949.

REFERENCES
[1] S. Agarwal, A. Das, and N. Das. 2016. An eicient approach for load balancing in

vehicular ad-hoc networks. In 2016 IEEE International Conference on Advanced
Networks and Telecommunications Systems (ANTS). 1ś6.

[2] A. Ahmed and E. Ahmed. [n. d.]. A survey on mobile edge computing. In 2016
10th International Conference on Intelligent Systems and Control (ISCO). 1ś8.

[3] FarhanAzmat Ali, Pieter Simoens, TimVerbelen, Piet Demeester, and Bart Dhoedt.
2016. Mobile device power models for energy eicient dynamic oloading at
runtime. Journal of Systems and Software 113 (2016), 173 ś 187.

[4] D. Anadu, C. Mushagalusa, N. Alsbou, and A. S. A. Abuabed. 2018. Internet of
Things: Vehicle collision detection and avoidance in a VANET environment. In
2018 IEEE International Instrumentation and Measurement Technology Conference
(I2MTC). 1ś6. https://doi.org/10.1109/I2MTC.2018.8409861

[5] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog
Computing and Its Role in the Internet of Things. In Proceedings of the First
Edition of the MCC Workshop on Mobile Cloud Computing (MCC ’12). ACM, 4.

[6] Shainaz Buruhanudeen, Mohamed Othman, and Borhanuddin Mohd Ali. 2007.
Mobility models, broadcasting methods and factors contributing towards the
eiciency of the MANET routing protocols: Overview. 2007 IEEE International
Conference on Telecommunications and Malaysia International Conference on Com-
munications (2007), 226ś230.

[7] Z. Cheng, H. Zhang, Y. Tan, and Y. Lim. 2016. Scheduling overload for real-time
systems using SMT solver. In 2016 17th IEEE/ACIS International Conference on
Software Engineering, Artiicial Intelligence, Networking and Parallel/Distributed
Computing (SNPD). 189ś194.

[8] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. 2012. SMTInterpol: An
Interpolating SMT Solver. In Model Checking Software, Alastair Donaldson and
David Parker (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 248ś254.

[9] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, and Mayur Naik. 2010.
CloneCloud: Boosting Mobile Device Applications Through Cloud Clone Ex-
ecution. CoRR abs/1009.3088 (2010).

[10] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. 2010. MAUI: Making Smartphones
Last Longer with Code Oload. In Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services (MobiSys ’10). ACM, 49ś62.

[11] Vincenzo De Maio and Ivona Brandic. 2019. Multi-Objective Mobile Edge Provi-
sioning in Small Cell Clouds. In Proceedings of the 2019 ACM/SPEC International
Conference on Performance Engineering (ICPE ’19). ACM, New York, NY, USA, 12.

[12] Leonardo de Moura and Nikolaj Bjùrner. 2008. Z3: An Eicient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-
ishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg.

[13] G. e. m. Zhioua, H. Labiod, N. Tabbane, and S. Tabbane. 2014. VANET Inherent
Capacity for Oloading Wireless Cellular Infrastructure: An Analytical Study.
In 2014 6th International Conference on New Technologies, Mobility and Security
(NTMS). 1ś5. https://doi.org/10.1109/NTMS.2014.6814060

[14] Vijay Ganesh and David L Dill. 2007. A decision procedure for bit-vectors and
arrays. In International Conference on Computer Aided Veriication. Springer.

[15] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K. Ghosh, and Rajkumar Buyya.
2016. iFogSim: A Toolkit for Modeling and Simulation of Resource Management
Techniques in Internet of Things, Edge and Fog Computing Environments. CoRR
abs/1606.02007 (2016).

[16] Nicolas Houy. 2014. The Bitcoin mining game. Available at SSRN 2407834 (2014).
[17] C. Huang, M. Chiang, D. Dao, W. Su, S. Xu, and H. Zhou. 2018. V2V Data

Oloading for Cellular Network Based on the Software Deined Network (SDN)
Inside Mobile Edge Computing (MEC) Architecture. IEEE Access 6 (2018).

[18] G. Hurlburt. 2016. Might the Blockchain Outlive Bitcoin? IT Professional 18, 2
(Mar 2016), 12ś16. https://doi.org/10.1109/MITP.2016.21

[19] E. Incerto, M. Tribastone, and C. Trubiani. 2016. Symbolic Performance Adapta-
tion. In 2016 IEEE/ACM 11th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS). 140ś150.

[20] J. Kang, R. Yu, X. Huang, S. Maharjan, Y. Zhang, and E. Hossain. 2017. Enabling
Localized Peer-to-Peer Electricity Trading Among Plug-in Hybrid Electric Vehi-
cles Using Consortium Blockchains. IEEE Transactions on Industrial Informatics
13, 6 (2017), 3154ś3164.

[21] Jiawen Kang, Rong Yu, Xumin Huang, Maoqiang Wu, Sabita Maharjan, Shengli
Xie, and Yan Zhang. 2018. Blockchain for secure and eicient data sharing in
vehicular edge computing and networks. IEEE Internet of Things Journal (2018).

[22] Kuljeet Kaur, Sahil Garg, Georges Kaddoum, François Gagnon, and Syed Hassan
Ahmed. 2019. Blockchain-based Lightweight Authentication Mechanism for
Vehicular Fog Infrastructure. arXiv preprint arXiv:1904.01168 (2019).

[23] Jung-Yoon Kim and Hyoung-Kee Choi. 2012. An Enhanced Security Protocol for
VANET-Based Entertainment Services. IEICE Transactions 95-B (2012).

[24] Seungmo Kim. 2019. Impacts of Mobility on Performance of Blockchain in VANET.
IEEE Access (2019).

[25] K. Kumar and Y. H. Lu. 2010. Cloud Computing for Mobile Users: Can Oloading
Computation Save Energy? Computer 43, 4 (2010), 51ś56.

[26] S Kwatirayo, J Almhana, and Z Liu. 2013. Adaptive traic light control using
VANET: A case study. 2013 9th International Wireless Communications and Mobile
Computing Conference, IWCMC 2013, 752ś757. https://doi.org/10.1109/IWCMC.
2013.6583651

[27] Benjamin Leiding, Parisa Memarmoshrei, and Dieter Hogrefe. 2016. Self-
managed and Blockchain-based Vehicular Ad-hoc Networks. In Proceedings of the
2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing:
Adjunct (UbiComp ’16). ACM, New York, NY, USA, 137ś140.

[28] Bo Li, Yijian Pei, Hao Wu, Zhi Liu, and Haixia Liu. 2014. Computation Oloading
Management for Vehicular Ad Hoc Cloud. In Algorithms and Architectures for
Parallel Processing, Xian-he Sun, Wenyu Qu, Ivan Stojmenovic, Wanlei Zhou,
Zhiyang Li, Hua Guo, Geyong Min, Tingting Yang, Yulei Wu, and Lei Liu (Eds.).
Springer International Publishing, Cham, 728ś739.

[29] L. Li, J. Liu, L. Cheng, S. Qiu, W. Wang, X. Zhang, and Z. Zhang. 2018. CreditCoin:
A Privacy-Preserving Blockchain-Based Incentive Announcement Network for
Communications of Smart Vehicles. IEEE Transactions on Intelligent Transporta-
tion Systems 19, 7 (2018), 2204ś2220.

[30] H. Liu, Y. Zhang, and T. Yang. 2018. Blockchain-Enabled Security in Electric
Vehicles Cloud and Edge Computing. IEEE Network 32, 3 (2018), 78ś83.

[31] M. Liu, F. R. Yu, Y. Teng, V. C. M. Leung, and M. Song. 2018. Computation
Oloading and Content Caching in Wireless Blockchain Networks With Mobile
Edge Computing. IEEE Transactions on Vehicular Technology 67, 11 (2018).

[32] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y. FlÃűtterÃűd, R. Hilbrich,
L. LÃĳcken, J. Rummel, P. Wagner, and E. WieBner. 2018. Microscopic Traf-
ic Simulation using SUMO. In 2018 21st International Conference on Intelligent
Transportation Systems (ITSC). 2575ś2582.

[33] Drazen Lucanin and Ivona Brandic. 2016. Pervasive Cloud Controller for Geotem-
poral Inputs. IEEE Trans. Cloud Computing 4, 2 (2016), 180ś195.

[34] Francisco J Martinez, J-C Cano, Carlos T Calafate, and Pietro Manzoni. 2008.
Citymob: a mobility model pattern generator for VANETs. In ICC Workshops-2008
IEEE International Conference on Communications Workshops. IEEE, 370ś374.

[35] M. Singh and S. Kim. 2018. Trust Bit: Reward-based intelligent vehicle commina-
tion using blockchain paper. In 2018 IEEE 4th World Forum on Internet of Things
(WF-IoT). 62ś67.

[36] C. Sonmez, A. Ozgovde, and C. Ersoy. [n. d.]. EdgeCloudSim: An environment for
performance evaluation of Edge Computing systems. In 2017 Second International
Conference on Fog and Mobile Edge Computing (FMEC). 39ś44.

[37] Z. Yang, K. Yang, L. Lei, K. Zheng, and V. C. M. Leung. 2019. Blockchain-Based
Decentralized Trust Management in Vehicular Networks. IEEE Internet of Things
Journal 6, 2 (April 2019), 1495ś1505. https://doi.org/10.1109/JIOT.2018.2836144

[38] R. Yugapriya, P. Dhivya, M. M. Dhivya, and S. Kirubakaran. 2014. Adaptive
traic management with VANET in V to I communication using greedy forward-
ing algorithm. In International Conference on Information Communication and
Embedded Systems (ICICES2014). 1ś6.

https://doi.org/10.1109/I2MTC.2018.8409861
https://doi.org/10.1109/NTMS.2014.6814060
https://doi.org/10.1109/MITP.2016.21
https://doi.org/10.1109/IWCMC.2013.6583651
https://doi.org/10.1109/IWCMC.2013.6583651
https://doi.org/10.1109/JIOT.2018.2836144

	Abstract
	1 Introduction
	2 Background
	2.1 VANET Information Validation
	2.2 Business Model

	3 Theoretical model
	3.1 VANET model
	3.2 PoS model
	3.3 PoS cost model
	3.4 Energy model
	3.5 SMT encoding of the problem

	4 ECbroker
	5 Experimental Setup
	5.1 Simulator
	5.2 Infrastructure model
	5.3 Node distribution
	5.4 Mobility Simulation
	5.5 PoS modelling
	5.6 SMT Solver

	6 Evaluation
	6.1 Quantile evaluation
	6.2 Infrastructure comparison
	6.3 Scalability evaluation

	7 Related works
	8 Conclusion and future work
	Acknowledgments
	References

